Linieritas Integral Henstock-Pettis pada Ruang Euclide Rn

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volterra Integral Inclusions via Henstock-kurzweil-pettis Integral

In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.

متن کامل

Henstock-Kurzweil Integral Transforms

Copyright q 2012 Salvador Sánchez-Perales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We show conditions for the existence, continuity, and differentiability of functions defined by ΓΓs ∞ −∞ ftgt, sdt, where f is a func...

متن کامل

On Pettis integral and Radon measures

Assuming the continuum hypothesis, we construct a universally weakly measurable function from [0,1] into a dual of some weakly compactly generated Banach space, which is not Pettis integrable. This (partially) solves a problem posed by Riddle, Saab and Uhl [13]. We prove two results related to Pettis integration in dual Banach spaces. We also contribute to the problem whether it is consistent t...

متن کامل

Nowhere Weak Differentiability of the Pettis Integral

For an arbitrary in nite-dimensional Banach space X, we construct examples of strongly-measurable X-valued Pettis integrable functions whose indefinite Pettis integrals are nowhere weakly di erentiable; thus, for these functions the Lebesgue Di erentiation Theorem fails rather spectacularly. We also relate the degree of nondi erentiability of the inde nite Pettis integral to the cotype of X, fr...

متن کامل

Laplace Transform Using the Henstock-kurzweil Integral

We consider the Laplace transform as a Henstock-Kurzweil integral. We give conditions for the existence, continuity and differentiability of the Laplace transform. A Riemann-Lebesgue Lemma is given, and it is proved that the Laplace transform of a convolution is the pointwise product of Laplace transforms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CAUCHY

سال: 2010

ISSN: 2086-0382

DOI: 10.18860/ca.v1i2.1705